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Abstract. We consider a kinetic king model with ferromagnetic interactions that  evolve^ 
in time according to two competing Glauberdynamics at different temperatures. The steady 
states of  this non-equilibrium model are studied by using a dynamic pair approximation, 
When the temperatures are IOW enough the system orders in a ferromagnetic state, but if 
one of the temperatures is allowed to be negative the system may have an antiferromagnetic 
order. We obtain the phase diagram for the case ofa square lattice. In this case WE calculate 
the critical exponent Y by using a mean field renormalization group method. The numerical 
results indicate that the model falls into the same universality class of the equilibrium king 
model. We also show that one particular case of the non-equilibrium model studied here 
is equivalent to the majority vote model. 

1. Introduction 

The king model with locally competing Glauber dynamics at different temperatures 
is one of the simplest non-equilibrium spin models that displays a phase transition. 
Such a model may be interpreted as a system in contact with two heat baths and was 
first considered by Garrido el al [I]. They showed, via mean field approach and Monte 
Carlo simulation, that the system can be ordered in a non-equilibrium steady state 
with the same kind of order exhibited in equilibrium. The critical exponent U for this 
model was estimated by Marques [Z], by using a mean field renormalization group 
method, suggesting that the model belongs to the same universality class of the 
equilibrium king model. 

In this paper we consider the same model but we allow one of the temperatures 
to become negative. The heat bath at negative temperature is interpreted as being a 
device that pumps energy into the system. In that way we are considering an king 
system in contact with a heat bath (at a positive temperature) and that receives a 
continuous flux of energy from the exterior (heat bath at a negative temperature). This 
source of energy gives to the non-equilibrium system the possibility of having another 
kind of order distinct from the equilibrium one. We have shown in an earlier study of 
a similar model that this far-from-equilibrium stationary state is identified with the 
antiferromagnetic state although the interactions are ferromagnetic ones [3]. 

The system follows a stochastic process composed of two Glauber processes, each 
of them simulating one heat bath. The Glauber process describing the colder heat bath 
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will occur with probability p and the other one with probability 9 = 1 -p.  Although 
each Glauber process satisfies detailed balance, the composite process does not, with 
the exception of the one-dimensional case. 

The model was solved by using a dynamical pair approximation [3-51. Given the 
limitations of the mean field approach in the prediction of critical exponents we use 
a mean field renormalization group method to calculate the exponent U. This technique 
proved rather useful in dealing with equilibrium phase transitions and was first applied 
to non-equilibrium systems by Marques [2]. The numerical results indicate that the 
model falls into the universality class of the equilibrium king model in agreement 
with the prediction by Grinstein et a1 [6]. 

2. The model 

Consider a lattice of N king spins with ferromagnetic interactions. The state of the 
system is represented by U = (u l ,  u2, . . . , uN) where uj = i l .  The energy of the state 
U is 

where the summation is over nearest-neighbour pairs and J > 0. We set J = 1. 

governed by the master equation [7] 
Let P(u, t )  be the probability of state U at time t. The evolution of P(u, t )  is 

N 

( 2 )  

where w , ( u )  is the probability of flipping spin I per unit time and the notation 
U'  = ( U , ,  u2, .  . . , -ur,. , , , uN) has been used. 

d 
- P ( u ,  t ) =  X { P ( u ' ,  O w , ( u ' ) - P ( u ,  i ) w , ( u ) }  
d t  , = I  

Let us denote by (f(u)) the average of a state functionf(u), that is, 

( f ( ~ ) ) = I f ( ~ ) P ( ~ >  1). (3 )  
n 

From the master equation we get the following equation for the time evolution of ( f ( u ) )  

N 

(4) 
d 
dt , = I  
-(f(u))= X (Mu')  -.f(u)lw,(fl)). 

The equations for the magnetization (U , )  of spin i and for the correlation (u,uA) between 
the nearest-neighbour spins J and k are therefore given by 

( 5 )  
d 
-(U,) = ( ( - 2 u , ) w , ( u ) )  dt  

and 

(6)  
d 
;(U, U k )  = (( -2u, U k  )r w, ( U )  + w, ( U ) ] ) .  

In this paper we consider a stochastic dynamics composed of two competing 
Glauber processes for which w , ( u )  is given by 

w , ( u ) = p w ? ( u ) +  S W 3 U )  (7) 
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where w:(u) and W;(U) are the transition rates for Glauber processes at temperatures 
TA and TR, respectively, and are given by [SI 

.:.E='[ 2 1 -U, tanh(8a.B; 

where the summation is over the nearest neighbours of site i, and 

w i n g  unc ui i luver procrss 

= 1/ 
For the one-dimensional case it is possible [ l]  to write the composite process as 

L.:..- ,-.... L.. 

wi(u)=;[1-u, t anh(p(u j+ ,+ui - , ) ) ]  (9) 

tanh(2p) = p  tanh(2pA)+9 tanh(2p,). (10) 

at a temperature T =  I /p  given by 

_. ~nerefore,  in this case, the system behaves as i i  it were in contact with just one heat 
bath at a temperature T. In other words, the system is described, in the stationary 
state, by the Gibbs distribution P ( u ) a e x p { - p E ( ~ ) ) .  

3. Pair approximation 

Let us consider a bipartite lattice of coordination K. We look for solutions such that 
(U,) = m, for any spin i of the sublattice 1, (U,) = m, for any spin j of the sublattice 2 
and (u,u,)=r for any pair of nearest-neighbour spins. If U, and U, are two nearest- 
neighbour spins belonging to sublattices 1 and 2, respectively, the pair probability 
P12(ul,  U,) and the single-spin probabilities P,(u,)  and PJuJ can be written as 

To calculate the averages of the right-hand sides of equations (5) and (6) we need 
the probabiiity of a ciusier composed by a cenirai spin and its K nearesi neighbours. 
If the central spin belongs to the sublattice 1 the probability of such a cluster is 
approximated by [3-51 

where the product is over the nearest-neighbour spins of site 1. A similar expression 
holds for a site belonging to sublattice 2. We point out that for the one-dimensional 
case the expression (14) is actually exact for the present model under stationary 
conditions. This can be verified to be the case by comparing the results we obtain, in 
the stationary state, by using the pair approximation and the results coming from the 
exact solution of the k ing  chain at a temperature T given by equation (10). 

By using the pair approximaiion we obiain ciosed equaiions for m,, m, and r. i n  
order to simplify the equations let us introduce the auxiliary quantities x, = P,(+) = 
( l+m,) /2 ,  y ,  = P , ( - ) = ( l  -m,)/2,  x 2 =  P2(+)=( l+mZ)/2 ,  y,= P I ( - )  = (1  - m2)/2, 
z =  PI,(++) = ( I  + m , + m 2 +  r)/4, U, = P,?(+-)=(I + m ,  - m2-r)/4, U > =  PI>(-+) = 
( I  - m, + m,- r)/4 and w = PI*(- - )  = ( 1  - m, - m2+ r)/4. By using these quantities, 
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the equations for the time evolution of m, ,  m, and r are 

where 

Cl = p tanh[PA(2/- K ) ] +  q tanh[P8(2/-K)J (18) 

and 

1 
DI=,(2/-K)C,.  (19) 

Notice that C K - , =  -Cl and DK-,= 4. 
The stationary solutions are obtained when the right-hand sides of equations 

(15)-(17)  vanish. The paramagnetic state corresponds to the trivial solution m, =0, 
m, = 0 and r solution of 

r =L (7) Dl(l + r ) ' ( l  - r ) K - l .  
2 K  1-0 

This solution exists for any value of TA, Ts and p.  However, it becomes unstable in 
a certain region of the space (TA,  TB,  p ) .  To obtain the line of instability of this solution 
we do  a linear stability analysis. By defining the variables mF and mA by mF = 
(m,+m,)/2 and mA = ( m ,  -m,)/2 we get, up to linear terms in the infinitesimal 
deviations Sm, and am,, the equations dSmF/dt = AF6mF and dSm,/dr = A,Sm, 
where the eigenvalues AF and A, are given by 

A F  = -1 +fK ( r )  (21) 

A A = - l  - f K ( - r )  (22) 

and 

where f K  ( r )  is defined by 

If A F  < 0 and A A  < 0, the paramagnetic state is stable. When A F  becomes positive 
a ferromagnetic state arises which is characterized by m, = m, f 0. If AA becomes 
positive instead then there appears an antiferromagnetic state characterized by m ,  = 
-m2 # 0. Therefore A F  = 0 and equation (20) gives the para-ferromagnetic transition 
iine whereas A ,  = 0 and equation (20)  gives ihe para-aniiferromagneiic iransiiion line. 

It is straightforward to show that actually the para-ferromagnetic line is given by 
equation (20) with r = 1 / (  K - l ) ,  that is, 
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whereas the para-antiferromagnetic line is given by equation (20) but now with 
r = - l / ( K - 1 ) ,  that is, 

2 -  

1 -  

We point out that when q=O, which corresponds to the equilibrium situation, the 
solution of equation (24) gives 

(26) 
1 

K - l  
tanh(pA) = __ 

which gives the Bethe-Peierls (pair) approximation for the equilibrium critical tem- 
perature. We remark also that along each critical line the energy of the system, which 
is N ( - K r / 2 ) ,  is a constant since r is a constant, but this result may be an artifact of 
the mean field approximation. 

4. Phase diagram 

We apply the results obtained in the previous section to the case of a square lattice 
( K  = 4). The critical lines are given by 

p[17 tanh(4pA)+20 tanh(2pA)]+q[17 tanh(4pB)+20 tanh(2p,)] =*27 (27) 
the upper sign corresponding to the para-ferromagnetic line and the lower to the 
para-antiferromagnetic line. Figures 1-6 show the phase diagram in  the variables 
TA = l / p A  and q for several values of T, = l /PB. For all cases, when q = 0 (equilibrium 
case), the system is in the ferromagnetic state if TA < T, and in the paramagnetic state 
if TAa T, where Tc=2/ln2 is the critical temperature in the Bethe-Peierls (pair) 
approximation. When O <  Ts < T, (figures 1 and 2), the system is always ordered if 
TA< T, and may be ordered for TA> T,. When ITsl> T, (figures 3-5) the system is 
always disordered if TA> T,. If TA < T,, there is a range in q for which the system is 
in the paramagnetic state even in the case TA = 0. 

" 
0 0.5 1 

9 
Figure 1. Phase diagram in the variables TA and q for the case of T,, = 0. P and F denote 
the paramagnetic and ferromagnetic phases. 
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0 'L 0 0.5 

9 
Figure 2. The same as figure 1 for the case a i  = 2.1 < 7,. 

5 1  

" 
0 0.5 1 

4 
Figure 3. The same as figure 1 for the case of Te = 3 > T, 

When -T,< T,<O, the phase diagram is similar to the extreme case in which 
PB+-m (figure 6). This corresponds to the case where the system is in contact with 

from the exterior. In this case besides the ferromagnetic and the paramagnetic phases 
there appears an antiferromagnetic state when the flux of energy is high. The critical 
lines are given by 

a heat hath at a temperatxre TA = l/O; and !ha! receiver a con!inuour flux of energy 

p[17tanh(4PA)+20 tanh(2pA)]-379=*27 (28) 

the upper sign corresponding to !he para-ferromagnetic ! h e  and the !ewer one ?n the 
para-antiferromagnetic line. The critical lines cross the q-axis at 9 = 5/37 and 9 = 32/37. 

The antiferromagnetic state found here should be expected since the spin-flip 
probability of the Glauber dynamics depends on the ratio between the spin coupling 
and the bath temperature. When one of the temperatures is negative, the system can 
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3 
TA 

2 

1 

0 

9 
Figure 4. T h e  same as figure I for the case of T. = 5 >  T, 

P 

0 0.5 1 
9 

Figure 5. The same as figure 1 for the case of TB = m. 

be seen as a kinetic lsing model with competition between ferromagnetic and antifer- 
romagnetic Glauber dynamics, both at positive temperatures. 

5. Renormalization group calculation 

We consider here only the para-ferromagnetic transition line. The results for the 
para-antiferromagnetic critical line can be obtained by a similar procedure. Following 
the scheme proposed by Marques [ 2 ]  we start by considering two separate clusters of 
spins: cluster I consisting of spin uo and cluster I1 consisting of spins uI and U?. Let 
us denote by P, (uo)  and by P , , ( u , ,  UJ their respective probabilities. We suppose that 
each nearest-neighbour spin of cluster I has a probability ( 1  + b ' ) / 2  of being up and 
a probability (1  - b') /2  of being down. The corresponding quantities for the cluster I1 
are (1 + b ) / 2  and ( 1  - b ) / 2 ,  respectively. 
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9 
Figure 6. The same as figure 1 for the case of p. = -m. In this case the system may be 
ordered in the antiferromagnetic (A) slate. 

The ‘eiiective iieids’ b and b’ approach zero near the transition iine and so do  the 
stationary values of the quantities P , ( + ) - P , ( - )  and P , , ( + + ) - P , , ( - - ) ,  which we 
denote by m’ and m, respectively. The MFRG scaling assumption is that m ’ / m  = b’/ b 
near the critical line. This equation is interpreted as a renormalization group recursion 
relation for the parameters ( P a  and p‘s for cluster I and PA and ps for cluster 11). 
For the square lattice one gets up to linear order terms in b’ and b 

b’ 
2 

m’=-  [p(tanh 4 p k + 2  tanh 2pa)  + q(tanb 4p‘,+2 tanh Zp’,)] (29) 

and 

3b[p(tanh4pA+2 tanh2p,)+q(tanh4P8+2 tanhzp,)] 
8 -p( tanh4PA+2 tanh2PA)-q(tanh4PB+2 tanh 2 p R )  ‘ 

m =  ... $0) 

The recursion relation P A + ) ;  is obtained by setting plg=p8 and by using the 
scaling assumption. The corresponding fixed point equations yield the critical lines. 
The phase diagrams given by this method is very similar to those calculated in the 
pair approximation. For instance, when De + -m we get Zp[tanh(4pA) + 2 tanh(2PA)] - 
3q = 1 2 ,  instead of equation (28), the intersection with the q-axis occurring at q =i 
and q = i .  

The exponent Y is obtained by I ” ”  = @ i / d p A  along the critical line. The standard 
choice for the scaling factor is in this case I = fi since the ratio between the number 
of spins in cluster 11 and cluster I is 2. This leads to v = 1.2 for all points on the critical 
line, the discrepancy from one point to another being less than 0.1%. The same MFRG 

approximation when applied to the equilibrium king model gives also Y = 1.2. Although 
these estimates differ from the exact value v =  1 for the equilibrium king model they 
are within the deviations that one should expect when dealing with clusters of small 
sizes. This seems to confirm that the model studied here falls in fact into the universality 
class of the equilibrium k i n g  as already found in other cases and in agreement with 
the argument by Grinstein et al [6]. 
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6. Majority vote model 

In the limit of pA + 00 and ps + -m the model studied here is equivalent to the majority 
vote model [9,10]. Taking these limits in equation (8), we get 

...LA-- AL. ,-..--.:-.. o,.., I- A.=-.> I ’ . ~ ~ \  ~ . :  --,.. , :c . .>n  - _ I  PIA\  
WIIC-IC LIK IUIILLIVII J ~ X ,  1s ut.imt.u oy > ( x i  = signcx, I I  x F U ariu J ~ U ,  = 0. Tius, ihe 
ith spin flips to the majority sign of its nearest-neighbour spins with probability p and 
to the minority with probability q. If the number of positive and negative signs are 
equal, the probability of flipping is i. 

In one dimension, it follows from equations (9) and (10) that the majority vote 
process is equivalent to a Glauber process at an inverse temperature p =$ In(p/q) so 

model. Therefore, one has a disordered state as  long as O C  q < 1. 
Within the pair approximation the following conclusions regarding the majority 

vote model may he drawn. In a bipartite lattice, the majority vote model has a 
ferromagnetic order for q < qc and an antiferromagnetic order for q > 1 - qc. For 
q c c q <  1 - q c ,  the system is disordered. From equations (24). (18) and (19) we get 

thrt :he statinnary state .Jdi!! be described by the eqdi!ib~fiz nea:est-x&ghboi;; :sing 

For K = 4  we get q,=$=0.135. For K = 6 , 8 , 1 0  we obtain q,=0.214, 0.258, 0.287, 
respectively. When K + m  we have q c + f ,  the asymptotic behaviour being given by 

qC=${ l - ( r /2K)”’ ) .  (33) 

The majority vote model is a particular case of a general class of polling models 
introduced by Gray [lo]. It  is possible to argue [lo] that the majority-vote model on 
a square lattice has two phases at sufficiently small q. Upper bounds for the critical 
parameter q. can be obtained for any regular lattice by using the following result [ I  11. 
Suppose the spin-flip probability is written in the form 

where uA is the product of spin variables belonging to a cluster of sites A. Then, the 
system has only one stationary state when X A  I cA I < 1. The condition E A  I C ,  1 = 1 gives 
then an upper bound for qc. Applying this result for the cases K = 4.6.8,  10 we get 
the upper bounds q = 0.25, 0.357, 0.417, 0.452, respectively. All these values are well 
above the respective results we have obtained by the pair approximation. 

7. Conclusion 

We have studied a stochastic king model with two competing Glauber dynamics at 
different temperatures. The steady states were obtained by using a dynamical pair 
approximation. When both temperatures are positive the system orders in a ferromag- 
netic state if the temperatures are low enough. When one is negative the system may 
have an antiferromagnetic order although the interactions are ferromagnetic. All 
transitions are found to be continuous. By using a mean field renormalization group 
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method we have studied the critical exponent v. The numerical results indicate that 
the system is in the same universality class of the equilibrium king model. 
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